Rare b Decays as Probes of New Physics

Wolfgang Altmannshofer waltmann@ucsc.edu

Snowmass 2021
Rare Processes and Precision Frontier Townhall Meeting
October 2, 2020

Anomalies in Rare b Decays

- Rare decays are well established probes of new physics
- Several anomalies in $b \to s\ell\ell$ decays:
 - (1) hints for LFU violation (R_K, R_{K^*}) ,
 - (2) total rates of several decays low compared to SM prediction,
 - (3) anomalous angular distribution in $B_d \to K^* \mu \mu$ (P_5').

Anomalies in Rare b Decays

- Rare decays are well established probes of new physics
- Several anomalies in $b \to s\ell\ell$ decays:
 - (1) hints for LFU violation (R_K, R_{K^*}) ,
 - (2) total rates of several decays low compared to SM prediction,
 - (3) anomalous angular distribution in $B_d \to K^* \mu \mu$ (P_5').

- Latest LHCb result on P₅ has exp. uncertainties that are comparable to the (agressive?) theory uncertainties.
- Will we learn anything from more precise measurements of the angular distribution?

New Physics or Hadronic Effects?

 $C_9(\bar{s}\gamma_\mu P_L b)(\bar{\mu}\gamma^\mu \mu)$ could be mimicked by hadronic effects

Distinguishing New Physics from Hadronic Effects

(heavy) New Physics

described by local

Hadronic Contributions

four fermion operator universal for all processes universal for all final state helicities independent on q^2

a non-local and non-perturbative effect could be process dependent could be helicity dependent could be q^2 dependent

Distinguishing New Physics from Hadronic Effects

(heavy) New Physics

Hadronic Contributions

described by local four fermion operator universal for all processes universal for all final state helicities independent on q² could be leptonic axial-vector current could be RH quark current could be CP violating could violate lepton flavor universality

a non-local and non-perturbative effect could be process dependent could be helicity dependent could be q² dependent leptonic vector current LH quark current CP conserving lepton flavor universal

The Future of Global Fits

- Need robust theory predictions to profit from the expected experimental precision.
- My point of view: we should "sacrifice C₉":
 Use completely generic parameterization of hadronic effects (in particular the "charm loops").
 - This means any new physics in the form of a lepton-universal real part of C_9 can be absorbed by an hadronic effect.
- However, sensitivity to new physics in everything else should remain: C_{10} , right-handed currents, CP violation, lepton-universality violation
- Such a setup is robust with respect to unknown hadronic effects (as long as the parameterization is sufficiently generic).
- ⇒ More precise measurements lead to better new physics sensitivity.

Rare b Decays at LHCb with 50+ fb⁻¹

- LHCb with 50 fb⁻¹ or 300 fb⁻¹ will have sufficient statistics to make precision measurements of $b \to d$ transitions, e.g. full angular analysis of $B_s \to K^* \mu^+ \mu^-$ with precision similar to the one we currently have for the $B_d \to K^* \mu^+ \mu^-$ decay.
- Can test lepton flavor universality in $b \to d\ell\ell$ transitions.
- Will have sensitivities to $b \to s\tau\tau$ and $b \to s\tau\mu$ that are interesting given predictions of some new physics models that explain the current anomalies.

Rare b Decays at Belle II

- Inclusive processes $B \to X_s \ell^+ \ell^-$ can be accessed at Belle II. Theoretically under better control than exclusive decays at low q^2 . Effect of the hadronic mass cut?
- Also interesting sensitivities to $b \to s\tau\tau$ and $b \to s\tau\mu$.
- Can have access to di-neutrino modes $B \to K \nu \nu$ and $B \to K^* \nu \nu$. Related to $b \to s \ell \ell$ by $SU(2)_L$, but cleaner (no charm loop pollution).

Rare b Decays at FCC-ee or CEPC

- Tera-Z factories (FCC-ee or CEPC) have unique sensitivities to processes with taus in the final state.
- E.g. up to 1000 fully reconstructed $B_d \to K^* \tau^+ \tau^-$ events.
- \Rightarrow Ultimate test of $L_{\mu} L_{\tau}$ models (predict that a 25% reduction of $b \rightarrow s \mu \mu$ is correlated with a 25% enhancement of $b \rightarrow s \tau \tau$)
 - Can probably also do $B_s \to \phi \nu \nu$ and $\Lambda_b \to \Lambda \nu \nu$